Fork me on GitHub

「CF696B」Puzzles 树上期望DP

Links there:CF696B

题意

给一棵树,根据$dfs(x)$中$x$的不同,每个节点的$dfn(i)$也会不同,求$dfs(i),i \in[1,n]$中$dfn(i)$的期望.

思路

还是去考虑每个节点作为根节点大法师时对其他点的贡献.

我们不如考虑一颗子树.已知节点$u$的期望$ans[u]=1.0$

对于剩下的点考虑$dfn$的排列可以是直接从$u$到达,则$ans[v] += ans[u] + 1.0$

或者是经过$u$的其他儿子且排在节点$v$前面的儿子的来.

不难发现每次对于任意$u$的儿子$a,b$满足$dfn(a)>dfn(b)$的概率为$\frac{1}{2}$

所以第二部分$ans[v] += (其他节点总数) * 0.5$

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
//my vegetable has exploded. :(
#include<bits/stdc++.h>
#define max(x,y) (x>y?x:y)
#define min(x,y) (x<y?x:y)
#define MM(x,y) memset(x,y,sizeof(x))
#define MCPY(a,b) memcpy(a,b,sizeof(b))
#define pb push_back
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define per(i,b,a) for(int i=b;i>=a;i--)
#define fi first
#define se second
#define int long long
using namespace std;

inline int quickpow(int m,int n,int p){int b=1;while(n){if(n&1)b=b*m%p;n=n>>1;m=m*m%p;}return b;}
inline int getinv(int x,int p){return quickpow(x,p-2,p);}
inline int read(void){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){f=ch=='-'?-1:1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x * f;
}
const int MAXN = 1e5+100;
struct Edges{
int to,nxt;
}E[MAXN<<1];
int head[MAXN],sz[MAXN],cnt = 0,n;
double ans[MAXN];
inline void addedge(int u,int v){
E[++cnt].nxt = head[u]; E[cnt].to = v; head[u] = cnt;
}
///------------------head------------------
inline void dfs(int u,int fa){
sz[u] = 1;
for (int i=head[u],v; i; i=E[i].nxt){
v=E[i].to;
//if (v != fa)
dfs(v,u);
sz[u] += sz[v];
}
}
inline void dfs2(int u,int f){
for (int i=head[u],v; i; i=E[i].nxt){
v=E[i].to;
//if(v==f)continue;
ans[v]=ans[u]+1.0+(sz[u]-sz[v]-1)*0.5;
dfs2(v,u);
}
}
signed main(signed argc, char *argv[]){
n=read();
rep(i,2,n) {
int t=read();
addedge(t,i);
}
dfs(1,-1);
ans[1] = 1.0;
dfs2(1,-1);
rep(i,1,n) printf("%.7lf ",ans[i]);
return 0;
}

/* Examples: */
/*

*/

/*

*/